Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nephrology (Carlton) ; 29(1): 48-54, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37772439

RESUMO

BACKGROUND: Accurate genetic diagnosis of end-stage renal disease patients with a family history of renal dysfunction is very essential. It not only helps in proper prognosis, but becomes crucial in designating donor for live related renal transplant. We here present a case of family with deleterious mutations in INF2 and ROBO2 and its importance of genetic testing before preparing for kidney transplantation. CASE PRESENTATION: We report the case of a 29-year-female with end-stage renal disease and rapidly progressive renal failure. Mutational analysis revealed an Autosomal Dominant inheritance pattern and mutation in exon 4 of the INF2 gene (p. Thr215Ser) and exon 26 of the ROBO2 gene (p. Arg1371Cys). Her mother was diagnosed for CKD stage 4 with creatinine level of 4.3 mg/dL. Genetic variants (INF2 and ROBO2) identified in proband were tested in her sisters and mother. Her elder sister was positive for both heterozygous variants (INF2 and ROBO2). Her mother was positive for mutation in INF2 gene, and her donor elder sister did not showed mutation in INF2 gene and had mutation in ROBO2 gene without any clinical symptoms. CONCLUSION: This case report emphasize that familial genetic screening has allowed us in allocating the donor selection in family where family member had history of genetic defect of Chronic Kidney Disease. Information of the causative renal disorder is extremely valuable for risk-assessment and planning of kidney transplantation.


Assuntos
Glomerulosclerose Segmentar e Focal , Falência Renal Crônica , Transplante de Rim , Humanos , Feminino , Idoso , Forminas/genética , Seguimentos , Glomerulosclerose Segmentar e Focal/genética , Mutação , Falência Renal Crônica/diagnóstico , Falência Renal Crônica/genética , Falência Renal Crônica/cirurgia , Linhagem , Proteínas Roundabout , Receptores Imunológicos/genética
2.
J Comput Aided Mol Des ; 37(11): 551-563, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37542610

RESUMO

Omicron derived lineages viz. BA.2, BA.3, BA.4 BA.5, BF.7 and XBBs show prominence with improved immune escape, transmissibility, infectivity, and pathogenicity in general. Sub-variants, XBB.1.5 and XBB.1.16 have shown rapid spread, with mutations embedded throughout the viral genome, including the spike protein. Changing atomic landscapes in spike contributes significantly to modulate host pathogen interactions and infections thereof. In the present work, we computationally analyzed the binding affinities of spike receptor binding domains (RBDs) of XBB.1.5 and XBB.1.16 towards human angiotensin-converting enzyme 2 (hACE2) compared to Omicron. We have employed simulations and binding energy estimation of molecular complexes of spike-hACE2 to assess the interplay of interaction pattern and effect of mutations if any in the binding mode of the RBDs of these novel mutants. We calculated the binding free energy (BFE) of the RBD of the Omicron, XBB.1.5 and XBB.1.16 spike protein to hACE2. We showed that XBB.1.5 and XBB.1.16 can bind to human cells more strongly than Omicron due to the increased charge of the RBD, which enhances the electrostatic interactions with negatively charged hACE2. The per-residue decompositions further show that the Asp339His, Asp405Asn and Asn460Lys mutations in the XBBs RBD play a crucial role in enhancing the electrostatic interactions, by acquiring positively charged residues, thereby influencing the formation/loss of interfacial bonds and thus strongly affecting the spike RBD-hACE2 binding affinity. Simulation results also indicate less interference of heterogeneous glycans of XBB.1.5 spike RBD towards binding to hACE2. Moreover, despite having less interaction at the three interfacial contacts between XBB S RBD and hACE2 compared to Omicron, variants XBB.1.5 and XBB.1.16 had higher total binding free energies (ΔGbind) than Omicron due to the contribution of non-interfacial residues to the free energy, providing insight into the increased binding affinity of XBB1.5 and XBB.1.16. Furthermore, the presence of large positively charged surface patches in the XBBs act as drivers of electrostatic interactions, thus support the possibility of a higher binding affinity to hACE2.


Assuntos
Simulação de Dinâmica Molecular , Glicoproteína da Espícula de Coronavírus , Humanos , Glicoproteína da Espícula de Coronavírus/genética , Mutação , Polissacarídeos , Software , Ligação Proteica
3.
Int J Biol Macromol ; 238: 124154, 2023 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-36965551

RESUMO

Fear of a fresh infection wave and a global health issue in the ongoing COVID-19 pandemic have been rekindled by the appearance of two new novel variants BF.7 and BA.4/5 of Omicron lineages. Predictions of increased antibody evasion capabilities and transmissibility have been recognised in addition to the existing lineages (BA.1.1, BA.2, BA.2.12.1 and BA.3) as cause for worry. In comparison to Omicron, BA.4 and BF.7 share nine mutations in the spike protein, Leu371Phe, Thr376Ala, Asp405Asn, Arg408Ser, Ser446Gly, Leu452Arg, Phe486Val, Arg493Gln, Ser496Gly, whereas BF.7 contains an additional mutation, Arg346Thr, in the receptor binding domain (RBD) region. Due to the critical need for analysis and data on the BA.4 and BF.7 variants, we have computationally analyzed the interaction pattern between the Omicron, BA.4 and BF.7 RBD and angiotensin-converting enzyme 2 (ACE2) to determine the influence of these unique mutations on the structures, functions, and binding affinity of RBD towards ACE2. These analyses also allow to compare molecular models to previously reported data to evaluate the robustness of our methods for quick prediction of emerging future variants. The docking results reveal that BA.4 and BF.7 have particularly strong interactions with ACE2 when compared to Omicron, as shown by several parameters such as salt bridge, hydrogen bond, and non-bonded interactions. In addition, the estimations of binding free energy corroborated the findings further. BA.4 and BF.7 were found to bind to ACE2 with similar affinities (-72.14 and - 71.54 kcal/mol, respectively) and slightly stronger than Omicron (-70.04 kcal/mol). The differences in the binding pattern between the Omicron, BA.4 and BF.7 variant complexes indicated that the BA.4 and BF.7 RBD substitutions Asp405Asn, Ser446Gly, Leu452Arg, Phe486Val and Arg493Gln caused additional interactions with ACE2. In addition, normal mode analyses also indicate more stable conformations of BA.4 and BF.7 RBDs against human ACE2. Based on these structural and simulation analyses, we hypothesized that these changes may affect the binding affinity of BA.4 and BF.7 with ACE2.


Assuntos
Enzima de Conversão de Angiotensina 2 , COVID-19 , Humanos , Enzima de Conversão de Angiotensina 2/genética , Pandemias , Projetos de Pesquisa , Simulação por Computador , Mutação , Ligação Proteica
4.
Comput Biol Med ; 152: 106392, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36502697

RESUMO

COVID-19 caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) emerged first around December 2019 in the city of Wuhan, China. Since then, several variants of the virus have emerged with different biological properties. This pandemic has so far led to widespread infection cycles with millions of fatalities and infections globally. In the recent cycle, a new variant omicron and its three sub-variants BA.1, BA.2 and BA.3 have emerged which seems to evade host immune defences and have brisk infection rate. Particularly, BA.2 variant has shown high transmission rate over BA.1 strain in different countries including India. In the present study, we have evaluated a set of eighty drugs/compounds using in silico docking calculations in omicron and its variants. These molecules were reported previously against SARS-CoV-2. Our docking and simulation analyses suggest differences in affinity of these compounds in omicron and BA.2 compared to SARS-CoV-2. These studies show that neohesperidin, a natural flavonoid found in Citrus aurantium makes a stable interaction with spike receptor domain of omicron and BA.2 compared to other variants. Free energy binding analyses further validates that neohesperidin forms a stable complex with spike RBD in omicron and BA.2 with a binding energy of -237.9 ± 18.7 kJ/mol and -164.1 ± 17.5 kJ/mol respectively. Key residual differences in the RBD interface of these variants form the basis for differential interaction affinities with neohesperidin as drug binding site overlaps with RBD-human ACE2 interface. These data might be useful for the design and development of novel scaffolds and pharmacophores to develop specific therapeutic strategies against these novel variants.


Assuntos
COVID-19 , Hesperidina , Humanos , SARS-CoV-2 , Simulação por Computador
5.
Front Pharmacol ; 13: 894535, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36160379

RESUMO

Despite recent improvements in multiple myeloma (MM) treatment, MM remains an incurable disease and most patients experience a relapse. The major reason for myeloma recurrence is the persistent stem cell-like population. It has been demonstrated that overexpression of Bruton's tyrosine kinase (BTK) in MM stem cell-like cells is correlated with drug resistance and poor prognosis. We have developed a novel small BTK inhibitor, KS151, which is unique compared to other BTK inhibitors. Unlike ibrutinib, and the other BTK inhibitors such as acalabrutinib, orelabrutinib, and zanubrutinib that covalently bind to the C481 residue in the BTK kinase domain, KS151 can inhibit BTK activities without binding to C481. This feature of KS151 is important because C481 becomes mutated in many patients and causes drug resistance. We demonstrated that KS151 inhibits in vitro BTK kinase activities and is more potent than ibrutinib. Furthermore, by performing a semi-quantitative, sandwich-based array for 71-tyrosine kinase phosphorylation, we found that KS151 specifically inhibits BTK. Our western blotting data showed that KS151 inhibits BTK signaling pathways and is effective against bortezomib-resistant cells as well as MM stem cell-like cells. Moreover, KS151 potentiates the apoptotic response of bortezomib, lenalidomide, and panobinostat in both MM and stem cell-like cells. Interestingly, KS151 inhibits stemness markers and is efficient in inhibiting Nanog and Gli1 stemness markers even when MM cells were co-cultured with bone marrow stromal cells (BMSCs). Overall, our results show that we have developed a novel BTK inhibitor effective against the stem cell-like population, and potentiates the response of chemotherapeutic agents.

6.
Int J Oncol ; 58(5)2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33760154

RESUMO

Colorectal cancer (CRC) is the second most common malignancy causing cancer­related mortality globally. It is the third most common type of cancer detected worldwide. The recent concept of the human body supporting a diverse community of microbes has revealed the important role these microbes play synergistically in maintaining normal homeostasis. The balance between the microbiomes and epithelial cells of the human body is essential for normal physiology. Evidence from meta­genome analysis indicates that an imbalance in the microbiome is prominent in the guts of patients with CRC. Several studies have suggested that the gut microbiota can secrete metabolites [short­chain fatty acids (SCFAs), vitamins, polyphenols and polyamines] that modulate the susceptibility of the colon and rectum by altering inflammation and DNA damage. The state of microbiome imbalance (dysbiosis) has been reported in patients with CRC, with an increasing population of 'bad' microbes and a decrease in 'good' microbes. The 'good' microbes, also known as commensal microbes, produce butyrate; however, 'bad' microbes cause a pro­inflammatory state. The complex association between pathological microbial communities leading to cancer progression is not yet fully understood. An altered microbial metabolite profile plays a direct role in CRC metabolism. Furthermore, diet plays an essential role in the risk of gastrointestinal cancer development. High­fiber diets regulate the gut microbiome and reduce the risk of CRC development, and may be fruitful in the better management of therapeutics. In the present review, the current status of the microbiome in CRC development is discussed.12.


Assuntos
Bactérias/patogenicidade , Neoplasias Colorretais/microbiologia , Disbiose/complicações , Bactérias/classificação , Bactérias/metabolismo , Microbioma Gastrointestinal , Humanos
7.
Int J Mol Med ; 47(3)2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33655327

RESUMO

Colorectal cancer (CRC) is the third most frequently detected type of cancer, and the second most common cause of cancer­related mortality globally. The American Cancer Society predicted that approximately 147,950 individuals would be diagnosed with CRC, out of which 53,200 individuals would succumb to the disease in the USA alone in 2020. CRC­related mortality ranks third among both males and females in the USA. CRC arises from 3 major pathways: i) The adenoma­carcinoma sequence; ii) serrated pathway; and iii) the inflammatory pathway. The majority of cases of CRC are sporadic and result from risk factors, such as a sedentary lifestyle, obesity, processed diets, alcohol consumption and smoking. CRC is also a common preventable cancer. With widespread CRC screening, the incidence and mortality from CRC have decreased in developed countries. However, over the past few decades, CRC cases and mortality have been on the rise in young adults (age, <50 years). In addition, CRC cases are increasing in developing countries with a low gross domestic product (GDP) due to lifestyle changes. CRC is an etiologically heterogeneous disease classified by tumor location and alterations in global gene expression. Accumulating genetic and epigenetic perturbations and aberrations over time in tumor suppressor genes, oncogenes and DNA mismatch repair genes could be a precursor to the onset of colorectal cancer. CRC can be divided as sporadic, familial, and inherited depending on the origin of the mutation. Germline mutations in APC and MLH1 have been proven to play an etiological role, resulting in the predisposition of individuals to CRC. Genetic alterations cause the dysregulation of signaling pathways leading to drug resistance, the inhibition of apoptosis and the induction of proliferation, invasion and migration, resulting in CRC development and metastasis. Timely detection and effective precision therapies based on the present knowledge of CRC is essential for successful treatment and patient survival. The present review presents the CRC incidence, risk factors, dysregulated signaling pathways and targeted therapies.


Assuntos
Neoplasias Colorretais/metabolismo , Reparo de Erro de Pareamento de DNA , Mutação em Linhagem Germinativa , Transdução de Sinais , Neoplasias Colorretais/diagnóstico , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Detecção Precoce de Câncer , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...